Nuprl Lemma : copath-nil-Agree
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  ∀p:copath(a.B[a];w). copathAgree(a.B[a];w;p;())
Proof
Definitions occuring in Statement : 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath-nil: ()
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
guard: {T}
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
true: True
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
member: t ∈ T
, 
copath-nil: ()
, 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath: copath(a.B[a];w)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
copath_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
less_than_irreflexivity, 
less_than_transitivity1, 
less_than_wf, 
top_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
coPathAgree0_lemma
Rules used in proof : 
universeEquality, 
functionEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
independent_functionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
sqequalAxiom, 
lessCases, 
because_Cache, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
natural_numberEquality, 
hypothesisEquality, 
rename, 
setElimination, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    \mforall{}p:copath(a.B[a];w).  copathAgree(a.B[a];w;p;())
Date html generated:
2018_07_25-PM-01_41_18
Last ObjectModification:
2018_06_15-PM-05_28_51
Theory : co-recursion
Home
Index