Nuprl Lemma : copath-nil-Agree

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  ∀p:copath(a.B[a];w). copathAgree(a.B[a];w;p;())


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-nil: () copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff guard: {T} prop: false: False not: ¬A squash: T true: True less_than': less_than'(a;b) less_than: a < b uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q nat: so_apply: x[s] so_lambda: λ2x.t[x] top: Top member: t ∈ T copath-nil: () copathAgree: copathAgree(a.B[a];w;x;y) copath: copath(a.B[a];w) all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW_wf copath_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert less_than_irreflexivity less_than_transitivity1 less_than_wf top_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf coPathAgree0_lemma
Rules used in proof :  universeEquality functionEquality applyEquality lambdaEquality cumulativity instantiate promote_hyp dependent_pairFormation independent_functionElimination imageElimination baseClosed imageMemberEquality independent_pairFormation sqequalAxiom lessCases because_Cache independent_isectElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination natural_numberEquality hypothesisEquality rename setElimination isectElimination hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid introduction cut sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    \mforall{}p:copath(a.B[a];w).  copathAgree(a.B[a];w;p;())



Date html generated: 2018_07_25-PM-01_41_18
Last ObjectModification: 2018_06_15-PM-05_28_51

Theory : co-recursion


Home Index