Nuprl Lemma : not-all-int_seg

i,j:ℤ.  ∀[P:{i..j-} ⟶ ℙ]. ((∀x:{i..j-}. Dec(P[x]))  (∀x:{i..j-}. P[x]) ⇐⇒ ∃x:{i..j-}. P[x])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a lelt: i ≤ j < k int_seg: {i..j-} guard: {T} or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q not: ¬A false: False
Lemmas referenced :  int_formula_prop_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformnot_wf intformle_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties int_seg_wf not_wf not-all-int_seg2 decidable__lt decidable_wf exists_wf all_wf
Rules used in proof :  computeAll voidEquality isect_memberEquality int_eqEquality dependent_pairFormation independent_isectElimination natural_numberEquality productElimination rename setElimination inrFormation inlFormation functionExtensionality unionElimination dependent_functionElimination extract_by_obid introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality independent_functionElimination voidElimination functionEquality cumulativity universeEquality intEquality

Latex:
\mforall{}i,j:\mBbbZ{}.
    \mforall{}[P:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:\{i..j\msupminus{}\}.  Dec(P[x]))  {}\mRightarrow{}  (\mneg{}(\mforall{}x:\{i..j\msupminus{}\}.  P[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:\{i..j\msupminus{}\}.  (\mneg{}P[x])))



Date html generated: 2016_10_21-AM-09_59_29
Last ObjectModification: 2016_09_26-PM-01_38_58

Theory : int_2


Home Index