Nuprl Lemma : not-all-int_seg
∀i,j:ℤ.  ∀[P:{i..j-} ⟶ ℙ]. ((∀x:{i..j-}. Dec(P[x])) 
⇒ (¬(∀x:{i..j-}. P[x]) 
⇐⇒ ∃x:{i..j-}. (¬P[x])))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
int_seg_wf, 
not_wf, 
not-all-int_seg2, 
decidable__lt, 
decidable_wf, 
exists_wf, 
all_wf
Rules used in proof : 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
rename, 
setElimination, 
inrFormation, 
inlFormation, 
functionExtensionality, 
unionElimination, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
intEquality
Latex:
\mforall{}i,j:\mBbbZ{}.
    \mforall{}[P:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:\{i..j\msupminus{}\}.  Dec(P[x]))  {}\mRightarrow{}  (\mneg{}(\mforall{}x:\{i..j\msupminus{}\}.  P[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:\{i..j\msupminus{}\}.  (\mneg{}P[x])))
Date html generated:
2016_10_21-AM-09_59_29
Last ObjectModification:
2016_09_26-PM-01_38_58
Theory : int_2
Home
Index