Nuprl Lemma : isSet_wf
∀[a:coSet{i:l}]. (isSet(a) ∈ ℙ)
Proof
Definitions occuring in Statement : 
isSet: isSet(w)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
isSet: isSet(w)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet_wf, 
coW-wfdd_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
universeEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:coSet\{i:l\}].  (isSet(a)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_29-AM-09_50_37
Last ObjectModification:
2018_07_24-PM-00_03_53
Theory : constructive!set!theory
Home
Index