Nuprl Lemma : isSet_wf

[a:coSet{i:l}]. (isSet(a) ∈ ℙ)


Proof




Definitions occuring in Statement :  isSet: isSet(w) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  coSet: coSet{i:l} so_apply: x[s] so_lambda: λ2x.t[x] isSet: isSet(w) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf coW-wfdd_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality lambdaEquality universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:coSet\{i:l\}].  (isSet(a)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_29-AM-09_50_37
Last ObjectModification: 2018_07_24-PM-00_03_53

Theory : constructive!set!theory


Home Index