Nuprl Lemma : setmem-mk-set-sq
∀[T,f,x:Top].  ((x ∈ f"(T)) ~ ∃b:T. seteq(x;f b))
Proof
Definitions occuring in Statement : 
mk-set: f"(T)
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
seteq: seteq(s1;s2)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW-item: coW-item(w;b)
, 
coWmem: coWmem(a.B[a];z;w)
, 
Wsup: Wsup(a;b)
, 
setmem: (x ∈ s)
, 
mk-set: f"(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,f,x:Top].    ((x  \mmember{}  f"(T))  \msim{}  \mexists{}b:T.  seteq(x;f  b))
Date html generated:
2018_07_29-AM-09_51_53
Last ObjectModification:
2018_07_11-PM-04_14_40
Theory : constructive!set!theory
Home
Index