Nuprl Lemma : setmem-mk-set-sq

[T,f,x:Top].  ((x ∈ f"(T)) ~ ∃b:T. seteq(x;f b))


Proof




Definitions occuring in Statement :  mk-set: f"(T) setmem: (x ∈ s) seteq: seteq(s1;s2) uall: [x:A]. B[x] top: Top exists: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  seteq: seteq(s1;s2) pi2: snd(t) pi1: fst(t) coW-dom: coW-dom(a.B[a];w) coW-item: coW-item(w;b) coWmem: coWmem(a.B[a];z;w) Wsup: Wsup(a;b) setmem: (x ∈ s) mk-set: f"(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,f,x:Top].    ((x  \mmember{}  f"(T))  \msim{}  \mexists{}b:T.  seteq(x;f  b))



Date html generated: 2018_07_29-AM-09_51_53
Last ObjectModification: 2018_07_11-PM-04_14_40

Theory : constructive!set!theory


Home Index