Nuprl Lemma : setmem-mkset-sq

[T,f,x:Top].  ((x ∈ {f[b] b ∈ T}) ~ ∃b:T. seteq(x;f[b]))


Proof




Definitions occuring in Statement :  mkset: {f[t] t ∈ T} setmem: (x ∈ s) seteq: seteq(s1;s2) uall: [x:A]. B[x] top: Top so_apply: x[s] exists: x:A. B[x] sqequal: t
Definitions unfolded in proof :  seteq: seteq(s1;s2) pi2: snd(t) pi1: fst(t) coW-dom: coW-dom(a.B[a];w) coW-item: coW-item(w;b) coWmem: coWmem(a.B[a];z;w) setmem: (x ∈ s) mkset: {f[t] t ∈ T} member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,f,x:Top].    ((x  \mmember{}  \{f[b]  |  b  \mmember{}  T\})  \msim{}  \mexists{}b:T.  seteq(x;f[b]))



Date html generated: 2018_07_29-AM-09_51_55
Last ObjectModification: 2018_07_11-PM-05_00_03

Theory : constructive!set!theory


Home Index