Nuprl Lemma : setmem-mkset-sq
∀[T,f,x:Top].  ((x ∈ {f[b] | b ∈ T}) ~ ∃b:T. seteq(x;f[b]))
Proof
Definitions occuring in Statement : 
mkset: {f[t] | t ∈ T}, 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
seteq: seteq(s1;s2), 
pi2: snd(t), 
pi1: fst(t), 
coW-dom: coW-dom(a.B[a];w), 
coW-item: coW-item(w;b), 
coWmem: coWmem(a.B[a];z;w), 
setmem: (x ∈ s), 
mkset: {f[t] | t ∈ T}, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,f,x:Top].    ((x  \mmember{}  \{f[b]  |  b  \mmember{}  T\})  \msim{}  \mexists{}b:T.  seteq(x;f[b]))
Date html generated:
2018_07_29-AM-09_51_55
Last ObjectModification:
2018_07_11-PM-05_00_03
Theory : constructive!set!theory
Home
Index