Nuprl Lemma : setmem-transmem
∀x,y:coSet{i:l}.  ((x ∈ y) 
⇒ (x ∈∈ y))
Proof
Definitions occuring in Statement : 
transmem: (x ∈∈ y)
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
guard: {T}
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
transmem: (x ∈∈ y)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
setmem_wf, 
transitive-closure-contains
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
because_Cache, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,y:coSet\{i:l\}.    ((x  \mmember{}  y)  {}\mRightarrow{}  (x  \mmember{}\mmember{}  y))
Date html generated:
2018_07_29-AM-10_03_24
Last ObjectModification:
2018_07_18-PM-11_37_00
Theory : constructive!set!theory
Home
Index