Nuprl Lemma : setrel_wf

[R:coSet{i:l}]. (setrel(R) ∈ coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ)


Proof




Definitions occuring in Statement :  setrel: setrel(R) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  setrel: setrel(R) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf orderedpairset_wf setmem_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[R:coSet\{i:l\}].  (setrel(R)  \mmember{}  coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2018_07_29-AM-10_06_28
Last ObjectModification: 2018_07_20-AM-11_32_51

Theory : constructive!set!theory


Home Index