Nuprl Lemma : setrel_wf
∀[R:coSet{i:l}]. (setrel(R) ∈ coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ)
Proof
Definitions occuring in Statement : 
setrel: setrel(R)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
setrel: setrel(R)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet_wf, 
orderedpairset_wf, 
setmem_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[R:coSet\{i:l\}].  (setrel(R)  \mmember{}  coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2018_07_29-AM-10_06_28
Last ObjectModification:
2018_07_20-AM-11_32_51
Theory : constructive!set!theory
Home
Index