Nuprl Lemma : singleset_wf2
∀[a:Set{i:l}]. ({a} ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
singleset: {a}
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
mkset: {f[t] | t ∈ T}
, 
singleset: {a}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
Set_wf, 
unit_wf2, 
mkset_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:Set\{i:l\}].  (\{a\}  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-09_53_14
Last ObjectModification:
2018_07_18-AM-10_45_32
Theory : constructive!set!theory
Home
Index