Step
*
1
4
of Lemma
subset-regext
1. A : Type
2. a : A ⟶ Set{i:l}
3. transitive-set(a"(A))
4. T : Type
5. f : T ⟶ Set{i:l}
6. ∀t:T. ((f[t] ∈ a"(A))
⇒ (f[t] ∈ regext(a"(A))))
7. t : A
8. seteq(f"(T);a t)
9. ∃b:Set{i:l}. ((b ∈ regext(a"(A))) ∧ λx,y. seteq(x;y):(a t
⇒ b) ∧ λx,y. seteq(x;y):(a t ─>> b))
⊢ (f"(T) ∈ regext(a"(A)))
BY
{ (RepUR ``mv-map onto-map`` -1 THEN ExRepD) }
1
1. A : Type
2. a : A ⟶ Set{i:l}
3. transitive-set(a"(A))
4. T : Type
5. f : T ⟶ Set{i:l}
6. ∀t:T. ((f[t] ∈ a"(A))
⇒ (f[t] ∈ regext(a"(A))))
7. t : A
8. seteq(f"(T);a t)
9. b : Set{i:l}
10. (b ∈ regext(a"(A)))
11. ∀x:Set{i:l}. ((x ∈ a t)
⇒ (∃y:Set{i:l}. ((y ∈ b) ∧ seteq(x;y))))
12. ∀y:Set{i:l}. ((y ∈ b)
⇒ (∃x:Set{i:l}. ((x ∈ a t) ∧ seteq(x;y))))
⊢ (f"(T) ∈ regext(a"(A)))
Latex:
Latex:
1. A : Type
2. a : A {}\mrightarrow{} Set\{i:l\}
3. transitive-set(a"(A))
4. T : Type
5. f : T {}\mrightarrow{} Set\{i:l\}
6. \mforall{}t:T. ((f[t] \mmember{} a"(A)) {}\mRightarrow{} (f[t] \mmember{} regext(a"(A))))
7. t : A
8. seteq(f"(T);a t)
9. \mexists{}b:Set\{i:l\}. ((b \mmember{} regext(a"(A))) \mwedge{} \mlambda{}x,y. seteq(x;y):(a t {}\mRightarrow{} b) \mwedge{} \mlambda{}x,y. seteq(x;y):(a t {}>> b))
\mvdash{} (f"(T) \mmember{} regext(a"(A)))
By
Latex:
(RepUR ``mv-map onto-map`` -1 THEN ExRepD)
Home
Index