Nuprl Lemma : subset-regext

a:Set{i:l}. (transitive-set(a)  (a ⊆ regext(a)))


Proof




Definitions occuring in Statement :  regext: regext(a) transitive-set: transitive-set(s) setsubset: (a ⊆ b) Set: Set{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  onto-map: R:(A ─>> B) cand: c∧ B allsetmem: a∈A.P[a] setsubset: (a ⊆ b) top: Top mv-map:  R:(A  B) guard: {T} set-relation: SetRelation(R) exists: x:A. B[x] pi2: snd(t) pi1: fst(t) set-dom: set-dom(s) set-item: set-item(s;x) Wsup: Wsup(a;b) mk-set: f"(T) so_apply: x[s] prop: so_lambda: λ2x.t[x] rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  seteq-iff-setsubset setmem_functionality_1 item_mk_set_lemma dom_mk_set_lemma setmem-mk-set-sq setmem_functionality setsubset_functionality setmem-mk-set transitive-set-iff seteq_transitivity seteq_inversion seteq_weakening set-dom_wf exists_wf equal_wf seteq_wf regext-lemma transitive-set_wf all_wf mk-set_wf setmem-iff set-subtype subtype-set Set_wf setmem_wf set-induction set-subtype-coSet regext_wf setsubset-iff2
Rules used in proof :  productEquality independent_pairFormation voidEquality voidElimination isect_memberEquality equalitySymmetry equalityTransitivity instantiate dependent_pairFormation universeEquality rename hypothesis_subsumption because_Cache functionEquality cumulativity lambdaEquality independent_functionElimination productElimination sqequalRule applyEquality hypothesis isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:Set\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  (a  \msubseteq{}  regext(a)))



Date html generated: 2018_07_29-AM-10_07_45
Last ObjectModification: 2018_07_20-PM-05_38_06

Theory : constructive!set!theory


Home Index