Nuprl Lemma : subset-regext
∀a:Set{i:l}. (transitive-set(a) 
⇒ (a ⊆ regext(a)))
Proof
Definitions occuring in Statement : 
regext: regext(a)
, 
transitive-set: transitive-set(s)
, 
setsubset: (a ⊆ b)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
onto-map: R:(A ─>> B)
, 
cand: A c∧ B
, 
allsetmem: ∀a∈A.P[a]
, 
setsubset: (a ⊆ b)
, 
top: Top
, 
mv-map:  R:(A 
⇒ B)
, 
guard: {T}
, 
set-relation: SetRelation(R)
, 
exists: ∃x:A. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
set-dom: set-dom(s)
, 
set-item: set-item(s;x)
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq-iff-setsubset, 
setmem_functionality_1, 
item_mk_set_lemma, 
dom_mk_set_lemma, 
setmem-mk-set-sq, 
setmem_functionality, 
setsubset_functionality, 
setmem-mk-set, 
transitive-set-iff, 
seteq_transitivity, 
seteq_inversion, 
seteq_weakening, 
set-dom_wf, 
exists_wf, 
equal_wf, 
seteq_wf, 
regext-lemma, 
transitive-set_wf, 
all_wf, 
mk-set_wf, 
setmem-iff, 
set-subtype, 
subtype-set, 
Set_wf, 
setmem_wf, 
set-induction, 
set-subtype-coSet, 
regext_wf, 
setsubset-iff2
Rules used in proof : 
productEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
dependent_pairFormation, 
universeEquality, 
rename, 
hypothesis_subsumption, 
because_Cache, 
functionEquality, 
cumulativity, 
lambdaEquality, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
applyEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:Set\{i:l\}.  (transitive-set(a)  {}\mRightarrow{}  (a  \msubseteq{}  regext(a)))
Date html generated:
2018_07_29-AM-10_07_45
Last ObjectModification:
2018_07_20-PM-05_38_06
Theory : constructive!set!theory
Home
Index