Nuprl Lemma : regext-lemma

T:Type. ∀f:T ⟶ Set{i:l}. ∀B:Set{i:l}.
  ((∃t:T. ∃g:set-dom(f t) ⟶ Set{i:l}. seteq(B;g"(set-dom(f t))))
   (∀R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ'
        (SetRelation(R)
          R:(B  regext(f"(T)))
         (∃b:Set{i:l}. ((b ∈ regext(f"(T))) ∧  R:(B  b) ∧ R:(B ─>> b))))))


Proof




Definitions occuring in Statement :  regext: regext(a) onto-map: R:(A ─>> B) mv-map:  R:(A  B) set-relation: SetRelation(R) mk-set: f"(T) Set: Set{i:l} setmem: (x ∈ s) seteq: seteq(s1;s2) set-dom: set-dom(s) prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  onto-map: R:(A ─>> B) mv-map:  R:(A  B) set-relation: SetRelation(R) rev_implies:  Q iff: ⇐⇒ Q guard: {T} cand: c∧ B coset-relation: coSetRelation(R) and: P ∧ Q Wsup: Wsup(a;b) mk-set: f"(T) mk-coset: mk-coset(T;f) exists: x:A. B[x] uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: subtype_rel: A ⊆B member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  onto-map_wf seteq_inversion setmem_functionality_1 regext_wf2 coSet-mem-Set-implies-Set mk-coset_wf seteq_wf set-dom_wf exists_wf set-relation_wf set_wf subtype_rel_self coSet-subtype-Set setmem_wf coSet_wf Set_wf subtype_rel_dep_function mk-set_wf regext_wf mv-map_wf set-subtype-coSet regext-lemma1
Rules used in proof :  independent_pairFormation productEquality dependent_pairFormation productElimination independent_isectElimination setEquality universeEquality functionEquality lambdaEquality instantiate isectElimination independent_functionElimination cumulativity sqequalRule because_Cache hypothesis applyEquality functionExtensionality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}B:Set\{i:l\}.
    ((\mexists{}t:T.  \mexists{}g:set-dom(f  t)  {}\mrightarrow{}  Set\{i:l\}.  seteq(B;g"(set-dom(f  t))))
    {}\mRightarrow{}  (\mforall{}R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'
                (SetRelation(R)
                {}\mRightarrow{}    R:(B  {}\mRightarrow{}  regext(f"(T)))
                {}\mRightarrow{}  (\mexists{}b:Set\{i:l\}.  ((b  \mmember{}  regext(f"(T)))  \mwedge{}    R:(B  {}\mRightarrow{}  b)  \mwedge{}  R:(B  {}>>  b))))))



Date html generated: 2018_07_29-AM-10_07_34
Last ObjectModification: 2018_07_20-PM-05_47_50

Theory : constructive!set!theory


Home Index