Nuprl Lemma : coSet-mem-Set-implies-Set
∀[z:coSet{i:l}]. z ∈ Set{i:l} supposing ∃s:Set{i:l}. (z ∈ s)
Proof
Definitions occuring in Statement : 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet_wf, 
setmem_wf, 
Set_wf, 
exists_wf, 
set-item_wf2, 
coSet-seteq-Set, 
set-subtype-coSet, 
setmem-iff
Rules used in proof : 
cumulativity, 
lambdaEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
isectElimination, 
independent_functionElimination, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[z:coSet\{i:l\}].  z  \mmember{}  Set\{i:l\}  supposing  \mexists{}s:Set\{i:l\}.  (z  \mmember{}  s)
Date html generated:
2018_07_29-AM-09_51_43
Last ObjectModification:
2018_07_11-PM-02_39_06
Theory : constructive!set!theory
Home
Index