Nuprl Lemma : set-item_wf2
∀[s:Set{i:l}]. ∀[t:set-dom(s)].  (set-item(s;t) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
Set: Set{i:l}
, 
set-item: set-item(s;x)
, 
set-dom: set-dom(s)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
top: Top
, 
all: ∀x:A. B[x]
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
Set_wf, 
set-subtype-coSet, 
set-dom_wf, 
item_mk_set_lemma, 
dom_mk_set_lemma, 
set-subtype, 
subtype-set
Rules used in proof : 
isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
rename, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
hypothesis_subsumption, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[t:set-dom(s)].    (set-item(s;t)  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-09_50_49
Last ObjectModification:
2018_07_11-PM-09_56_41
Theory : constructive!set!theory
Home
Index