Nuprl Lemma : subtype-set
(T:Type × (T ⟶ Set{i:l})) ⊆r Set{i:l}
Proof
Definitions occuring in Statement : 
Set: Set{i:l}
, 
subtype_rel: A ⊆r B
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
set-ext
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin
Latex:
(T:Type  \mtimes{}  (T  {}\mrightarrow{}  Set\{i:l\}))  \msubseteq{}r  Set\{i:l\}
Date html generated:
2018_05_22-PM-09_47_37
Last ObjectModification:
2018_05_16-PM-01_31_07
Theory : constructive!set!theory
Home
Index