Nuprl Lemma : set-subtype-coSet
Set{i:l} ⊆r coSet{i:l}
Proof
Definitions occuring in Statement : 
Set: Set{i:l}
, 
coSet: coSet{i:l}
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
pcw-path: Path
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
param-W: pW
, 
W: W(A;a.B[a])
, 
coW: coW(A;a.B[a])
, 
Set: Set{i:l}
, 
coSet: coSet{i:l}
Lemmas referenced : 
pcw-partial_wf, 
pcw-pp-barred_wf, 
nat_wf, 
exists_wf, 
squash_wf, 
le_wf, 
false_wf, 
pcw-step-agree_wf, 
it_wf, 
unit_wf2, 
pcw-path_wf, 
all_wf, 
top_wf, 
param-co-W_wf
Rules used in proof : 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
functionEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
applyEquality, 
setEquality, 
hypothesis, 
sqequalHypSubstitution, 
hypothesisEquality, 
cut, 
rename, 
thin, 
setElimination, 
lambdaEquality, 
sqequalRule, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
Set\{i:l\}  \msubseteq{}r  coSet\{i:l\}
Date html generated:
2018_07_29-AM-09_50_29
Last ObjectModification:
2018_07_10-PM-05_40_11
Theory : constructive!set!theory
Home
Index