Nuprl Lemma : regext-lemma1

T:Type. ∀f:T ⟶ coSet{i:l}. ∀B:coSet{i:l}.
  ((∃t:T. ∃g:set-dom(f t) ⟶ coSet{i:l}. seteq(B;mk-coset(set-dom(f t);g)))
   (∀R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ'
        (coSetRelation(R)
          R:(B  regext(mk-coset(T;f)))
         (∃b:coSet{i:l}. ((b ∈ regext(mk-coset(T;f))) ∧  R:(B  b) ∧ R:(B ─>> b))))))


Proof




Definitions occuring in Statement :  regext: regext(a) onto-map: R:(A ─>> B) mv-map:  R:(A  B) coset-relation: coSetRelation(R) setmem: (x ∈ s) seteq: seteq(s1;s2) set-dom: set-dom(s) mk-coset: mk-coset(T;f) coSet: coSet{i:l} prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  onto-map: R:(A ─>> B) regextfun: regextfun(f;w) cand: c∧ B mk-set: f"(T) pi1: fst(t) rev_implies:  Q guard: {T} Wsup: Wsup(a;b) top: Top uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B mk-coset: mk-coset(T;f) regext: regext(a) exists: x:A. B[x] mv-map:  R:(A  B) coset-relation: coSetRelation(R) prop: and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  seteq_inversion setmem-mk-coset onto-map_wf equal_wf setmem_functionality all_wf W_wf setmem-coset Wsup_wf W-subtype-coW regextfun_wf seteq_weakening setmem-mk-set-sq seteq_wf set-dom_wf exists_wf coset-relation_wf set_wf subtype_rel_self coSet_wf subtype_rel_dep_function mv-map_wf setmem_wf setsubset-iff regext_wf transitive-set-iff mk-coset_wf regext-transitive
Rules used in proof :  productEquality independent_pairFormation functionExtensionality equalitySymmetry equalityTransitivity dependent_pairFormation voidEquality voidElimination isect_memberEquality rename setElimination independent_isectElimination setEquality universeEquality cumulativity functionEquality lambdaEquality because_Cache instantiate applyEquality sqequalRule promote_hyp allFunctionality independent_functionElimination productElimination hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}B:coSet\{i:l\}.
    ((\mexists{}t:T.  \mexists{}g:set-dom(f  t)  {}\mrightarrow{}  coSet\{i:l\}.  seteq(B;mk-coset(set-dom(f  t);g)))
    {}\mRightarrow{}  (\mforall{}R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'
                (coSetRelation(R)
                {}\mRightarrow{}    R:(B  {}\mRightarrow{}  regext(mk-coset(T;f)))
                {}\mRightarrow{}  (\mexists{}b:coSet\{i:l\}.  ((b  \mmember{}  regext(mk-coset(T;f)))  \mwedge{}    R:(B  {}\mRightarrow{}  b)  \mwedge{}  R:(B  {}>>  b))))))



Date html generated: 2018_07_29-AM-10_07_29
Last ObjectModification: 2018_07_20-PM-05_48_17

Theory : constructive!set!theory


Home Index