Nuprl Lemma : mv-map_wf

[A,B:coSet{i:l}]. ∀[R:{u:coSet{i:l}| (u ∈ A)}  ⟶ {v:coSet{i:l}| (v ∈ B)}  ⟶ ℙ'].  R:(A  B) ∈ ℙ')


Proof




Definitions occuring in Statement :  mv-map:  R:(A  B) setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q prop: implies:  Q so_lambda: λ2x.t[x] mv-map:  R:(A  B) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_self exists_wf setmem_wf coSet_wf all_wf
Rules used in proof :  because_Cache isect_memberEquality setEquality equalitySymmetry equalityTransitivity axiomEquality universeEquality dependent_set_memberEquality applyEquality productEquality hypothesisEquality cumulativity functionEquality lambdaEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:coSet\{i:l\}].  \mforall{}[R:\{u:coSet\{i:l\}|  (u  \mmember{}  A)\}    {}\mrightarrow{}  \{v:coSet\{i:l\}|  (v  \mmember{}  B)\}    {}\mrightarrow{}  \mBbbP{}'].
    (  R:(A  {}\mRightarrow{}  B)  \mmember{}  \mBbbP{}')



Date html generated: 2018_07_29-AM-10_06_17
Last ObjectModification: 2018_07_20-PM-00_57_03

Theory : constructive!set!theory


Home Index