Nuprl Lemma : regextfun_wf

[T:Type]. ∀[f:T ⟶ coSet{i:l}]. ∀[w:coW(T;x.set-dom(f x))].  (regextfun(f;w) ∈ coSet{i:l})


Proof




Definitions occuring in Statement :  regextfun: regextfun(f;w) set-dom: set-dom(s) coSet: coSet{i:l} coW: coW(A;a.B[a]) uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ext-eq: A ≡ B Wsup: Wsup(a;b) mk-set: f"(T) regextfun: regextfun(f;w) and: P ∧ Q prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf subtype_rel_wf set_wf subtype_rel_weakening coW-ext set-dom_wf coW_wf fix_wf_coSet_system
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality instantiate universeEquality functionExtensionality rename setElimination dependent_pairEquality productElimination independent_isectElimination functionEquality productEquality because_Cache hypothesis_subsumption isect_memberEquality hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].  \mforall{}[w:coW(T;x.set-dom(f  x))].    (regextfun(f;w)  \mmember{}  coSet\{i:l\})



Date html generated: 2018_07_29-AM-10_07_04
Last ObjectModification: 2018_07_20-PM-04_48_59

Theory : constructive!set!theory


Home Index