Nuprl Lemma : fix_wf_coSet_system

[I:𝕌']. ∀[G:⋂C:{C:𝕌'| ((T:Type × (T ⟶ C)) ⊆C) ∧ (coSet{i:l} ⊆C)} ((I ⟶ C) ⟶ I ⟶ (T:Type × (T ⟶ C)))].
  (fix(G) ∈ I ⟶ coSet{i:l})


Proof




Definitions occuring in Statement :  coSet: coSet{i:l} subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  guard: {T} cand: c∧ B implies:  Q prop: all: x:A. B[x] subtype_rel: A ⊆B type-monotone: Monotone(T.F[T]) uimplies: supposing a and: P ∧ Q so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  corec-subtype-coSet subtype_rel_dep_function set_wf subtype_rel_transitivity coSet-subtype-corec subtype_rel_sets subtype_rel_function subtype_rel_product fix_wf_corec_system coSet_wf subtype_rel_wf corec_wf
Rules used in proof :  independent_pairFormation productElimination applyEquality lambdaFormation independent_isectElimination because_Cache isect_memberEquality rename setElimination setEquality isectEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality cumulativity functionEquality universeEquality productEquality lambdaEquality sqequalRule isectElimination sqequalHypSubstitution extract_by_obid instantiate thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:\mBbbU{}'].  \mforall{}[G:\mcap{}C:\{C:\mBbbU{}'|  ((T:Type  \mtimes{}  (T  {}\mrightarrow{}  C))  \msubseteq{}r  C)  \mwedge{}  (coSet\{i:l\}  \msubseteq{}r  C)\} 
                              ((I  {}\mrightarrow{}  C)  {}\mrightarrow{}  I  {}\mrightarrow{}  (T:Type  \mtimes{}  (T  {}\mrightarrow{}  C)))].
    (fix(G)  \mmember{}  I  {}\mrightarrow{}  coSet\{i:l\})



Date html generated: 2018_07_29-AM-09_50_15
Last ObjectModification: 2018_07_11-AM-11_04_28

Theory : constructive!set!theory


Home Index