Nuprl Lemma : fix_wf_corec_system
∀[F:Type ⟶ Type]
  ∀[I:Type]. ∀[G:⋂T:{T:Type| (F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ F[T])].
    (fix(G) ∈ I ⟶ corec(T.F[T])) 
  supposing Monotone(T.F[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
type-monotone: Monotone(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
top: Top
Lemmas referenced : 
fix_wf_corec1, 
continuous-function, 
continuous-constant, 
continuous-id, 
subtype_rel_self, 
nat_wf, 
subtype_rel_wf, 
corec_wf, 
set_wf, 
top_wf, 
bool_wf, 
type-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
hypothesis, 
isectEquality, 
applyEquality, 
cumulativity, 
independent_pairFormation, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
functionExtensionality, 
because_Cache, 
voidElimination, 
voidEquality, 
axiomEquality, 
setEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[I:Type].  \mforall{}[G:\mcap{}T:\{T:Type|  (F[T]  \msubseteq{}r  T)  \mwedge{}  (corec(T.F[T])  \msubseteq{}r  T)\}  .  ((I  {}\mrightarrow{}  T)  {}\mrightarrow{}  I  {}\mrightarrow{}  F[T])].
        (fix(G)  \mmember{}  I  {}\mrightarrow{}  corec(T.F[T])) 
    supposing  Monotone(T.F[T])
Date html generated:
2019_06_20-PM-00_36_53
Last ObjectModification:
2018_08_07-PM-05_28_48
Theory : co-recursion
Home
Index