Nuprl Lemma : fix_wf_corec_system

[F:Type ⟶ Type]
  ∀[I:Type]. ∀[G:⋂T:{T:Type| (F[T] ⊆T) ∧ (corec(T.F[T]) ⊆T)} ((I ⟶ T) ⟶ I ⟶ F[T])].
    (fix(G) ∈ I ⟶ corec(T.F[T])) 
  supposing Monotone(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-monotone: Monotone(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  prop: subtype_rel: A ⊆B bfalse: ff top: Top
Lemmas referenced :  fix_wf_corec1 continuous-function continuous-constant continuous-id subtype_rel_self nat_wf subtype_rel_wf corec_wf set_wf top_wf bool_wf type-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality functionEquality universeEquality independent_isectElimination hypothesis isectEquality applyEquality cumulativity independent_pairFormation isect_memberEquality unionElimination equalityElimination setElimination rename dependent_set_memberEquality productEquality equalityTransitivity equalitySymmetry instantiate functionExtensionality because_Cache voidElimination voidEquality axiomEquality setEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[I:Type].  \mforall{}[G:\mcap{}T:\{T:Type|  (F[T]  \msubseteq{}r  T)  \mwedge{}  (corec(T.F[T])  \msubseteq{}r  T)\}  .  ((I  {}\mrightarrow{}  T)  {}\mrightarrow{}  I  {}\mrightarrow{}  F[T])].
        (fix(G)  \mmember{}  I  {}\mrightarrow{}  corec(T.F[T])) 
    supposing  Monotone(T.F[T])



Date html generated: 2019_06_20-PM-00_36_53
Last ObjectModification: 2018_08_07-PM-05_28_48

Theory : co-recursion


Home Index