Nuprl Lemma : coset-relation_wf

[R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ']. (coSetRelation(R) ∈ ℙ')


Proof




Definitions occuring in Statement :  coset-relation: coSetRelation(R) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] coset-relation: coSetRelation(R) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  seteq_wf coSet_wf all_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesisEquality cumulativity functionEquality lambdaEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  (coSetRelation(R)  \mmember{}  \mBbbP{}')



Date html generated: 2018_07_29-AM-10_06_09
Last ObjectModification: 2018_07_20-PM-00_42_55

Theory : constructive!set!theory


Home Index