Nuprl Lemma : coset-relation_wf
∀[R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ']. (coSetRelation(R) ∈ ℙ')
Proof
Definitions occuring in Statement : 
coset-relation: coSetRelation(R)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
coset-relation: coSetRelation(R)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteq_wf, 
coSet_wf, 
all_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  (coSetRelation(R)  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-10_06_09
Last ObjectModification:
2018_07_20-PM-00_42_55
Theory : constructive!set!theory
Home
Index