Nuprl Lemma : setmem_functionality_1
∀s,x1,x2:coSet{i:l}.  (seteq(x1;x2) 
⇒ ((x1 ∈ s) 
⇐⇒ (x2 ∈ s)))
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
seteqweaken_wf, 
equal_wf, 
coSet_wf, 
seteq_wf, 
setmemfunc_wf
Rules used in proof : 
dependent_functionElimination, 
axiomEquality, 
instantiate, 
functionExtensionality, 
sqequalRule, 
hypothesis, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyEquality, 
cut, 
lambdaEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}s,x1,x2:coSet\{i:l\}.    (seteq(x1;x2)  {}\mRightarrow{}  ((x1  \mmember{}  s)  \mLeftarrow{}{}\mRightarrow{}  (x2  \mmember{}  s)))
Date html generated:
2018_07_29-AM-09_51_41
Last ObjectModification:
2018_07_11-PM-00_37_14
Theory : constructive!set!theory
Home
Index