Nuprl Lemma : seteqweaken_wf

s1,s2:coSet{i:l}.  (seteqweaken(s2) ∈ (s1 s2 ∈ coSet{i:l})  seteq(s1;s2))


Proof




Definitions occuring in Statement :  seteqweaken: seteqweaken(s2) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] implies:  Q member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B seteqweaken1_ext seteqweaken: seteqweaken(s2) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  seteq_wf equal_wf all_wf coSet_wf subtype_rel_self seteqweaken1_ext
Rules used in proof :  cumulativity hypothesisEquality lambdaEquality functionEquality isectElimination sqequalHypSubstitution introduction hypothesis extract_by_obid instantiate thin applyEquality sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s1,s2:coSet\{i:l\}.    (seteqweaken(s2)  \mmember{}  (s1  =  s2)  {}\mRightarrow{}  seteq(s1;s2))



Date html generated: 2018_07_29-AM-09_50_59
Last ObjectModification: 2018_07_11-PM-00_01_06

Theory : constructive!set!theory


Home Index