Nuprl Lemma : setsubset_functionality

a,b,a',b':coSet{i:l}.  (seteq(a;a')  seteq(b;b')  ((a ⊆ b) ⇐⇒ (a' ⊆ b')))


Proof




Definitions occuring in Statement :  setsubset: (a ⊆ b) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] rev_implies:  Q member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  seteq_weakening setmem_functionality seteq_wf setmem_wf coSet_wf all_wf iff_wf setsubset_wf setsubset-iff
Rules used in proof :  impliesLevelFunctionality allLevelFunctionality allFunctionality because_Cache functionEquality lambdaEquality sqequalRule instantiate isectElimination cumulativity independent_functionElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction impliesFunctionality independent_pairFormation thin productElimination sqequalHypSubstitution addLevel cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b,a',b':coSet\{i:l\}.    (seteq(a;a')  {}\mRightarrow{}  seteq(b;b')  {}\mRightarrow{}  ((a  \msubseteq{}  b)  \mLeftarrow{}{}\mRightarrow{}  (a'  \msubseteq{}  b')))



Date html generated: 2018_07_29-AM-10_01_21
Last ObjectModification: 2018_07_20-PM-06_23_00

Theory : constructive!set!theory


Home Index