Nuprl Lemma : setmem-mk-set
∀T:Type. ∀f:T ⟶ Set{i:l}. ∀t:T.  (f t ∈ f"(T))
Proof
Definitions occuring in Statement : 
mk-set: f"(T)
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
Set_wf, 
seteq_wf, 
seteq_weakening, 
item_mk_set_lemma, 
dom_mk_set_lemma, 
mk-set_wf, 
set-subtype-coSet, 
setmem-iff
Rules used in proof : 
universeEquality, 
cumulativity, 
functionEquality, 
because_Cache, 
dependent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
isectElimination, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}t:T.    (f  t  \mmember{}  f"(T))
Date html generated:
2018_07_29-AM-09_51_58
Last ObjectModification:
2018_07_20-PM-06_22_19
Theory : constructive!set!theory
Home
Index