Nuprl Lemma : setmem-mk-set

T:Type. ∀f:T ⟶ Set{i:l}. ∀t:T.  (f t ∈ f"(T))


Proof




Definitions occuring in Statement :  mk-set: f"(T) Set: Set{i:l} setmem: (x ∈ s) all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: exists: x:A. B[x] top: Top implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  Set_wf seteq_wf seteq_weakening item_mk_set_lemma dom_mk_set_lemma mk-set_wf set-subtype-coSet setmem-iff
Rules used in proof :  universeEquality cumulativity functionEquality because_Cache dependent_pairFormation voidEquality voidElimination isect_memberEquality independent_functionElimination productElimination isectElimination sqequalRule hypothesis hypothesisEquality applyEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}t:T.    (f  t  \mmember{}  f"(T))



Date html generated: 2018_07_29-AM-09_51_58
Last ObjectModification: 2018_07_20-PM-06_22_19

Theory : constructive!set!theory


Home Index