Nuprl Lemma : transmem_transitivity
Trans(coSet{i:l};x,y.(x ∈∈ y))
Proof
Definitions occuring in Statement : 
transmem: (x ∈∈ y)
, 
coSet: coSet{i:l}
, 
trans: Trans(T;x,y.E[x; y])
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
trans: Trans(T;x,y.E[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
transmem: (x ∈∈ y)
Lemmas referenced : 
setmem_wf, 
coSet_wf, 
transitive-closure-transitive
Rules used in proof : 
because_Cache, 
lambdaFormation, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
Trans(coSet\{i:l\};x,y.(x  \mmember{}\mmember{}  y))
Date html generated:
2018_07_29-AM-10_03_27
Last ObjectModification:
2018_07_18-PM-11_37_36
Theory : constructive!set!theory
Home
Index