Nuprl Lemma : transmem_transitivity

Trans(coSet{i:l};x,y.(x ∈∈ y))


Proof




Definitions occuring in Statement :  transmem: (x ∈∈ y) coSet: coSet{i:l} trans: Trans(T;x,y.E[x; y])
Definitions unfolded in proof :  all: x:A. B[x] trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) prop: member: t ∈ T uall: [x:A]. B[x] transmem: (x ∈∈ y)
Lemmas referenced :  setmem_wf coSet_wf transitive-closure-transitive
Rules used in proof :  because_Cache lambdaFormation hypothesisEquality cumulativity lambdaEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
Trans(coSet\{i:l\};x,y.(x  \mmember{}\mmember{}  y))



Date html generated: 2018_07_29-AM-10_03_27
Last ObjectModification: 2018_07_18-PM-11_37_36

Theory : constructive!set!theory


Home Index