Step
*
1
1
of Lemma
Kan_sigma_filler_wf
.....subterm..... T:t
1:n
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. B : {X.Kan-type(A) ⊢ _(Kan)}
4. I : Cname List
5. alpha : X(I)
6. J : nameset(I) List
7. x : nameset(I)
8. i : ℕ2
9. bx : A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)
⊢ let cubeA = filler(x;i;sigma-box-fst(bx)) in
let cubeB = filler(x;i;sigma-box-snd(bx)) in
<cubeA, cubeB> ∈ Σ Kan-type(A) Kan-type(B)(alpha)
BY
{ (RepUR ``let`` 0
THEN (RWO "cubical-sigma-at" 0 THENA Auto)
THEN (Assert l_subset(Cname;J;I) BY
(D -1 THEN Unhide THEN Auto))
THEN (GenConclTerm ⌜filler(x;i;sigma-box-fst(bx))⌝⋅ THENA Auto)
THEN Thin (-1)
THEN D -1
THEN GenConclTerm ⌜filler(x;i;sigma-box-snd(bx))⌝⋅
THEN Auto) }
Latex:
Latex:
.....subterm..... T:t
1:n
1. X : CubicalSet
2. A : \{X \mvdash{} \_(Kan)\}
3. B : \{X.Kan-type(A) \mvdash{} \_(Kan)\}
4. I : Cname List
5. alpha : X(I)
6. J : nameset(I) List
7. x : nameset(I)
8. i : \mBbbN{}2
9. bx : A-open-box(X;\mSigma{} Kan-type(A) Kan-type(B);I;alpha;J;x;i)
\mvdash{} let cubeA = filler(x;i;sigma-box-fst(bx)) in
let cubeB = filler(x;i;sigma-box-snd(bx)) in
<cubeA, cubeB> \mmember{} \mSigma{} Kan-type(A) Kan-type(B)(alpha)
By
Latex:
(RepUR ``let`` 0
THEN (RWO "cubical-sigma-at" 0 THENA Auto)
THEN (Assert l\_subset(Cname;J;I) BY
(D -1 THEN Unhide THEN Auto))
THEN (GenConclTerm \mkleeneopen{}filler(x;i;sigma-box-fst(bx))\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN D -1
THEN GenConclTerm \mkleeneopen{}filler(x;i;sigma-box-snd(bx))\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index