Step
*
2
1
1
of Lemma
adjacent-compatible-iff
1. [X] : CubicalSet
2. I : Cname List
3. L : I-face(X;I) List
4. ∀f1,f2:I-face(X;I).
     ((f1 ∈ L)
     
⇒ (f2 ∈ L)
     
⇒ (¬(dimension(f1) = dimension(f2) ∈ Cname))
     
⇒ ((dimension(f2):=direction(f2))(cube(f1))
        = (dimension(f1):=direction(f1))(cube(f2))
        ∈ X(I-[dimension(f1); dimension(f2)])))
5. i : ℕ||L||
6. j : ℕi
7. dimension(L[j]) = dimension(L[i]) ∈ Cname
⊢ face-compatible(X;I;L[j];L[i])
BY
{ (MoveToConcl (-1) THEN GenConclTerms Auto [⌜L[j]⌝;⌜L[i]⌝]⋅) }
1
1. [X] : CubicalSet
2. I : Cname List
3. L : I-face(X;I) List
4. ∀f1,f2:I-face(X;I).
     ((f1 ∈ L)
     
⇒ (f2 ∈ L)
     
⇒ (¬(dimension(f1) = dimension(f2) ∈ Cname))
     
⇒ ((dimension(f2):=direction(f2))(cube(f1))
        = (dimension(f1):=direction(f1))(cube(f2))
        ∈ X(I-[dimension(f1); dimension(f2)])))
5. i : ℕ||L||
6. j : ℕi
7. v : I-face(X;I)
8. L[j] = v ∈ I-face(X;I)
9. v1 : I-face(X;I)
10. L[i] = v1 ∈ I-face(X;I)
⊢ (dimension(v) = dimension(v1) ∈ Cname) 
⇒ face-compatible(X;I;v;v1)
Latex:
Latex:
1.  [X]  :  CubicalSet
2.  I  :  Cname  List
3.  L  :  I-face(X;I)  List
4.  \mforall{}f1,f2:I-face(X;I).
          ((f1  \mmember{}  L)
          {}\mRightarrow{}  (f2  \mmember{}  L)
          {}\mRightarrow{}  (\mneg{}(dimension(f1)  =  dimension(f2)))
          {}\mRightarrow{}  ((dimension(f2):=direction(f2))(cube(f1))  =  (dimension(f1):=direction(f1))(cube(f2))))
5.  i  :  \mBbbN{}||L||
6.  j  :  \mBbbN{}i
7.  dimension(L[j])  =  dimension(L[i])
\mvdash{}  face-compatible(X;I;L[j];L[i])
By
Latex:
(MoveToConcl  (-1)  THEN  GenConclTerms  Auto  [\mkleeneopen{}L[j]\mkleeneclose{};\mkleeneopen{}L[i]\mkleeneclose{}]\mcdot{})
Home
Index