Nuprl Lemma : adjacent-compatible-iff
∀[X:CubicalSet]
  ∀I:Cname List. ∀L:I-face(X;I) List.
    uiff(adjacent-compatible(X;I;L);∀f1,f2:I-face(X;I).
                                      ((f1 ∈ L)
                                      
⇒ (f2 ∈ L)
                                      
⇒ (¬(dimension(f1) = dimension(f2) ∈ Cname))
                                      
⇒ ((dimension(f2):=direction(f2))(cube(f1))
                                         = (dimension(f1):=direction(f1))(cube(f2))
                                         ∈ X(I-[dimension(f1); dimension(f2)]))))
Proof
Definitions occuring in Statement : 
adjacent-compatible: adjacent-compatible(X;I;L)
, 
face-cube: cube(f)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
face-map: (x:=i)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
adjacent-compatible: adjacent-compatible(X;I;L)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
I-face: I-face(X;I)
, 
face-compatible: face-compatible(X;I;f1;f2)
, 
spreadn: spread3, 
face-dimension: dimension(f)
, 
pi1: fst(t)
, 
face-cube: cube(f)
, 
face-direction: direction(f)
, 
pi2: snd(t)
, 
not: ¬A
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
sq_type: SQType(T)
, 
less_than: a < b
Lemmas referenced : 
not_wf, 
equal_wf, 
coordinate_name_wf, 
face-dimension_wf, 
nameset_wf, 
l_member_wf, 
I-face_wf, 
adjacent-compatible_wf, 
all_wf, 
I-cube_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-cube_wf, 
list_wf, 
face-map_wf2, 
face-direction_wf, 
name-morph_wf, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
list-diff2, 
iff_weakening_equal, 
subtype_rel_self, 
list-diff2-sym, 
decidable__lt, 
lelt_wf, 
length_wf, 
face-compatible_wf, 
nat_properties, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
le_wf, 
int_formula_prop_wf, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base, 
nat_wf, 
decidable__equal_int, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_seg_wf, 
decidable__equal-coordinate_name, 
select_wf, 
select_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
instantiate, 
cumulativity
Latex:
\mforall{}[X:CubicalSet]
    \mforall{}I:Cname  List.  \mforall{}L:I-face(X;I)  List.
        uiff(adjacent-compatible(X;I;L);\mforall{}f1,f2:I-face(X;I).
                                                                            ((f1  \mmember{}  L)
                                                                            {}\mRightarrow{}  (f2  \mmember{}  L)
                                                                            {}\mRightarrow{}  (\mneg{}(dimension(f1)  =  dimension(f2)))
                                                                            {}\mRightarrow{}  ((dimension(f2):=direction(f2))(cube(f1))
                                                                                  =  (dimension(f1):=direction(f1))(cube(f2)))))
Date html generated:
2017_10_05-AM-10_18_01
Last ObjectModification:
2017_07_28-AM-11_20_32
Theory : cubical!sets
Home
Index