Nuprl Lemma : adjacent-compatible-iff

[X:CubicalSet]
  ∀I:Cname List. ∀L:I-face(X;I) List.
    uiff(adjacent-compatible(X;I;L);∀f1,f2:I-face(X;I).
                                      ((f1 ∈ L)
                                       (f2 ∈ L)
                                       (dimension(f1) dimension(f2) ∈ Cname))
                                       ((dimension(f2):=direction(f2))(cube(f1))
                                         (dimension(f1):=direction(f1))(cube(f2))
                                         ∈ X(I-[dimension(f1); dimension(f2)]))))


Proof




Definitions occuring in Statement :  adjacent-compatible: adjacent-compatible(X;I;L) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet face-map: (x:=i) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs l_member: (x ∈ l) cons: [a b] nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B nameset: nameset(L) so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B nat: decidable: Dec(P) or: P ∨ Q adjacent-compatible: adjacent-compatible(X;I;L) pairwise: (∀x,y∈L.  P[x; y]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B I-face: I-face(X;I) face-compatible: face-compatible(X;I;f1;f2) spreadn: spread3 face-dimension: dimension(f) pi1: fst(t) face-cube: cube(f) face-direction: direction(f) pi2: snd(t) not: ¬A coordinate_name: Cname int_upper: {i...} false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_type: SQType(T) less_than: a < b
Lemmas referenced :  not_wf equal_wf coordinate_name_wf face-dimension_wf nameset_wf l_member_wf I-face_wf adjacent-compatible_wf all_wf I-cube_wf list-diff_wf cname_deq_wf cons_wf nil_wf cube-set-restriction_wf face-cube_wf list_wf face-map_wf2 face-direction_wf name-morph_wf subtype_rel_wf squash_wf true_wf list-diff2 iff_weakening_equal subtype_rel_self list-diff2-sym decidable__lt lelt_wf length_wf face-compatible_wf nat_properties int_seg_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma le_wf int_formula_prop_wf subtype_base_sq list_subtype_base set_subtype_base int_subtype_base nat_wf decidable__equal_int intformless_wf int_formula_prop_less_lemma decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_seg_wf decidable__equal-coordinate_name select_wf select_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule dependent_functionElimination axiomEquality because_Cache functionEquality natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination unionElimination dependent_set_memberEquality hyp_replacement applyLambdaEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll instantiate cumulativity

Latex:
\mforall{}[X:CubicalSet]
    \mforall{}I:Cname  List.  \mforall{}L:I-face(X;I)  List.
        uiff(adjacent-compatible(X;I;L);\mforall{}f1,f2:I-face(X;I).
                                                                            ((f1  \mmember{}  L)
                                                                            {}\mRightarrow{}  (f2  \mmember{}  L)
                                                                            {}\mRightarrow{}  (\mneg{}(dimension(f1)  =  dimension(f2)))
                                                                            {}\mRightarrow{}  ((dimension(f2):=direction(f2))(cube(f1))
                                                                                  =  (dimension(f1):=direction(f1))(cube(f2)))))



Date html generated: 2017_10_05-AM-10_18_01
Last ObjectModification: 2017_07_28-AM-11_20_32

Theory : cubical!sets


Home Index