Nuprl Lemma : csm-adjoin-ap
∀[sigma,u,I,del:Top].  (((sigma;u))del ~ <(sigma)del, (u)del>)
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[sigma,u,I,del:Top].    (((sigma;u))del  \msim{}  <(sigma)del,  (u)del>)
Date html generated:
2016_06_16-PM-05_41_33
Last ObjectModification:
2015_12_28-PM-04_34_28
Theory : cubical!sets
Home
Index