Nuprl Lemma : csm-comp-sq

[A,B,C,F,G:Top].  (G ~ λA,x. (G (F x)))


Proof




Definitions occuring in Statement :  csm-comp: F uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-comp: F trans-comp: t1 t2 mk-nat-trans: |→ T[x] cat-comp: cat-comp(C) pi2: snd(t) type-cat: TypeCat compose: g
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[A,B,C,F,G:Top].    (G  o  F  \msim{}  \mlambda{}A,x.  (G  A  (F  A  x)))



Date html generated: 2018_05_23-PM-06_28_31
Last ObjectModification: 2018_05_18-AM-10_31_08

Theory : cubical!sets


Home Index