Nuprl Lemma : csm-comp-sq
∀[A,B,C,F,G:Top].  (G o F ~ λA,x. (G A (F A x)))
Proof
Definitions occuring in Statement : 
csm-comp: G o F, 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
lambda: λx.A[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
csm-comp: G o F, 
trans-comp: t1 o t2, 
mk-nat-trans: x |→ T[x], 
cat-comp: cat-comp(C), 
pi2: snd(t), 
type-cat: TypeCat, 
compose: f o g
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[A,B,C,F,G:Top].    (G  o  F  \msim{}  \mlambda{}A,x.  (G  A  (F  A  x)))
Date html generated:
2018_05_23-PM-06_28_31
Last ObjectModification:
2018_05_18-AM-10_31_08
Theory : cubical!sets
Home
Index