Step
*
of Lemma
cubical-eta
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠA B}].  ((λapp((w)p; q)) = w ∈ {X ⊢ _:ΠA B})
BY
{ xxx((Auto THEN Symmetry) THEN Assert ⌜w = (λapp((w)p; q)) ∈ (I:(Cname List) ⟶ a:X(I) ⟶ ((fst(ΠA B)) I a))⌝⋅)xxx }
1
.....assertion..... 
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. w : {X ⊢ _:ΠA B}
⊢ w = (λapp((w)p; q)) ∈ (I:(Cname List) ⟶ a:X(I) ⟶ ((fst(ΠA B)) I a))
2
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. w : {X ⊢ _:ΠA B}
5. w = (λapp((w)p; q)) ∈ (I:(Cname List) ⟶ a:X(I) ⟶ ((fst(ΠA B)) I a))
⊢ w = (λapp((w)p; q)) ∈ {X ⊢ _:ΠA B}
Latex:
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].    ((\mlambda{}app((w)p;  q))  =  w)
By
Latex:
xxx((Auto  THEN  Symmetry)  THEN  Assert  \mkleeneopen{}w  =  (\mlambda{}app((w)p;  q))\mkleeneclose{}\mcdot{})xxx
Home
Index