Nuprl Lemma : cubical-eta

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠB}].  ((λapp((w)p; q)) w ∈ {X ⊢ _:ΠB})


Proof




Definitions occuring in Statement :  cubical-app: app(w; u) cubical-lambda: b) cubical-pi: ΠB cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cc-snd: q cc-fst: p csm-ap-term: (t)s cubical-app: app(w; u) cubical-lambda: b) cubical-pi: ΠB pi1: fst(t) csm-ap: (s)x cubical-term: {X ⊢ _:AF} cubical-pi-family: cubical-pi-family(X;A;B;I;a) squash: T so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a true: True top: Top prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_apply: x[s] cc-adjoin-cube: (v;u) pi2: snd(t)
Lemmas referenced :  cubical-term_wf cubical-pi_wf cubical-type_wf cube-context-adjoin_wf cubical-set_wf I-cube_wf list_wf coordinate_name_wf cubical-type-at_wf cube-set-restriction_wf name-morph_wf all_wf equal_wf cc-adjoin-cube_wf cubical-type-ap-morph_wf name-comp_wf subtype_rel-equal cube-set-restriction-comp cc-adjoin-cube-restriction squash_wf true_wf subtype_rel_self iff_weakening_equal id-morph_wf cube-set-restriction-id name-comp-id-right cubical-term-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache functionExtensionality setElimination rename applyEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_set_memberEquality lambdaEquality dependent_functionElimination independent_isectElimination natural_numberEquality voidElimination voidEquality equalityTransitivity universeEquality instantiate productElimination independent_functionElimination hyp_replacement

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].    ((\mlambda{}app((w)p;  q))  =  w)



Date html generated: 2018_05_23-PM-06_32_06
Last ObjectModification: 2018_05_20-PM-04_21_23

Theory : cubical!sets


Home Index