Nuprl Lemma : cc-adjoin-cube-restriction
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[J,K,g,v,u:Top].  (g((v;u)) ~ (g(v);(u v g)))
Proof
Definitions occuring in Statement : 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
cubical-type-ap-morph: (u a f)
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type: {X ⊢ _}
, 
cubical-type-ap-morph: (u a f)
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
pi2: snd(t)
, 
cube-set-restriction: f(s)
, 
pi1: fst(t)
Lemmas referenced : 
top_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[J,K,g,v,u:Top].    (g((v;u))  \msim{}  (g(v);(u  v  g)))
Date html generated:
2016_06_16-PM-05_40_56
Last ObjectModification:
2015_12_28-PM-04_35_06
Theory : cubical!sets
Home
Index