Nuprl Lemma : cc-adjoin-cube-restriction

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[J,K,g,v,u:Top].  (g((v;u)) (g(v);(u g)))


Proof




Definitions occuring in Statement :  cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-type-ap-morph: (u f) cubical-type: {X ⊢ _} cube-set-restriction: f(s) cubical-set: CubicalSet uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-type-ap-morph: (u f) cc-adjoin-cube: (v;u) cube-context-adjoin: X.A pi2: snd(t) cube-set-restriction: f(s) pi1: fst(t)
Lemmas referenced :  top_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule hypothesis sqequalAxiom lemma_by_obid isect_memberEquality isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[J,K,g,v,u:Top].    (g((v;u))  \msim{}  (g(v);(u  v  g)))



Date html generated: 2016_06_16-PM-05_40_56
Last ObjectModification: 2015_12_28-PM-04_35_06

Theory : cubical!sets


Home Index