Nuprl Lemma : cc-adjoin-cube_wf
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀J:Cname List. ∀v:X(J). ∀u:A(v).  ((v;u) ∈ X.A(J))
Proof
Definitions occuring in Statement : 
cc-adjoin-cube: (v;u), 
cube-context-adjoin: X.A, 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
I-cube: X(I), 
cubical-set: CubicalSet, 
coordinate_name: Cname, 
list: T List, 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
cubical-type: {X ⊢ _}, 
cc-adjoin-cube: (v;u), 
cube-context-adjoin: X.A, 
I-cube: X(I), 
top: Top, 
functor-ob: ob(F), 
cubical-type-at: A(a), 
pi1: fst(t), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
so_apply: x[s]
Lemmas referenced : 
ob_pair_lemma, 
subtype_rel_self, 
list_wf, 
coordinate_name_wf, 
cubical-type-at_wf, 
name-morph_wf, 
I-cube_wf, 
cube-set-restriction_wf, 
all_wf, 
equal_wf, 
id-morph_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
cube-set-restriction-id, 
iff_weakening_equal, 
name-comp_wf, 
cube-set-restriction-comp, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
dependent_pairEquality, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
functionExtensionality, 
dependent_set_memberEquality, 
functionEquality, 
productEquality, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}J:Cname  List.  \mforall{}v:X(J).  \mforall{}u:A(v).    ((v;u)  \mmember{}  X.A(J))
Date html generated:
2017_10_05-AM-10_13_21
Last ObjectModification:
2017_07_28-AM-11_18_51
Theory : cubical!sets
Home
Index