Step
*
1
1
of Lemma
cubical-eta
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. w : I:(Cname List) ⟶ a:X(I) ⟶ cubical-pi-family(X;A;B;I;a)
5. ∀I,J:Cname List. ∀f:name-morph(I;J). ∀a:X(I). let A,F = ΠA B in (F I J f a (w I a)) = (w J f(a)) ∈ (A J f(a))
6. I : Cname List
7. a : X(I)
⊢ (w I a) = (λJ,f,u. (w J (fst((f(a);u))) J 1 (snd((f(a);u))))) ∈ cubical-pi-family(X;A;B;I;a)
BY
{ xxx((Assert w I a ∈ cubical-pi-family(X;A;B;I;a) BY
Auto)
THEN (MemTypeHD (-1) THENA Auto)
THEN EqTypeCD
THEN Auto
THEN ((Ext THENA Auto) THEN RenameVar `J' (-1))
THEN ((Ext THENA Auto) THEN RenameVar `f' (-1))
THEN (Ext THENA Auto)
THEN RenameVar `u' (-1)
THEN Reduce 0)xxx }
1
1. X : CubicalSet
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. w : I:(Cname List) ⟶ a:X(I) ⟶ cubical-pi-family(X;A;B;I;a)
5. ∀I,J:Cname List. ∀f:name-morph(I;J). ∀a:X(I). let A,F = ΠA B in (F I J f a (w I a)) = (w J f(a)) ∈ (A J f(a))
6. I : Cname List
7. a : X(I)
8. (w I a) = (w I a) ∈ (J:(Cname List) ⟶ f:name-morph(I;J) ⟶ u:A(f(a)) ⟶ B((f(a);u)))
9. ∀J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀u:A(f(a)).
((w I a J f u (f(a);u) g) = (w I a K (f o g) (u f(a) g)) ∈ B(g((f(a);u))))
10. J : Cname List
11. f : name-morph(I;J)
12. u : A(f(a))
⊢ (w I a J f u) = (w J (fst((f(a);u))) J 1 (snd((f(a);u)))) ∈ B((f(a);u))
Latex:
Latex:
1. X : CubicalSet
2. A : \{X \mvdash{} \_\}
3. B : \{X.A \mvdash{} \_\}
4. w : I:(Cname List) {}\mrightarrow{} a:X(I) {}\mrightarrow{} cubical-pi-family(X;A;B;I;a)
5. \mforall{}I,J:Cname List. \mforall{}f:name-morph(I;J). \mforall{}a:X(I). let A,F = \mPi{}A B in (F I J f a (w I a)) = (w J f(a))
6. I : Cname List
7. a : X(I)
\mvdash{} (w I a) = (\mlambda{}J,f,u. (w J (fst((f(a);u))) J 1 (snd((f(a);u)))))
By
Latex:
xxx((Assert w I a \mmember{} cubical-pi-family(X;A;B;I;a) BY
Auto)
THEN (MemTypeHD (-1) THENA Auto)
THEN EqTypeCD
THEN Auto
THEN ((Ext THENA Auto) THEN RenameVar `J' (-1))
THEN ((Ext THENA Auto) THEN RenameVar `f' (-1))
THEN (Ext THENA Auto)
THEN RenameVar `u' (-1)
THEN Reduce 0)xxx
Home
Index