Step
*
2
2
1
of Lemma
cubical-interval-filler_wf
.....subterm..... T:t
1:n
1. I : Cname List
2. J : nameset(I) List
3. ¬(J = [] ∈ (nameset(I) List))
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(cubical-interval();I;J;x;i)
7. nameset(J) ⊆r nameset(I)
8. L : name-morph(I;[])
⊢ cube(get_face(hd(J);L hd(J);bx))(L) ∈ ℕ2
BY
{ (GenConcl ⌜hd(J) = y ∈ nameset(J)⌝⋅ THENA (Unfold `nameset` 0 THEN Auto)) }
1
1. I : Cname List
2. J : nameset(I) List
3. ¬(J = [] ∈ (nameset(I) List))
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(cubical-interval();I;J;x;i)
7. nameset(J) ⊆r nameset(I)
8. L : name-morph(I;[])
9. y : nameset(J)
10. hd(J) = y ∈ nameset(J)
⊢ cube(get_face(y;L y;bx))(L) ∈ ℕ2
Latex:
Latex:
.....subterm..... T:t
1:n
1. I : Cname List
2. J : nameset(I) List
3. \mneg{}(J = [])
4. x : nameset(I)
5. i : \mBbbN{}2
6. bx : open\_box(cubical-interval();I;J;x;i)
7. nameset(J) \msubseteq{}r nameset(I)
8. L : name-morph(I;[])
\mvdash{} cube(get\_face(hd(J);L hd(J);bx))(L) \mmember{} \mBbbN{}2
By
Latex:
(GenConcl \mkleeneopen{}hd(J) = y\mkleeneclose{}\mcdot{} THENA (Unfold `nameset` 0 THEN Auto))
Home
Index