Nuprl Lemma : cubical-interval-filler_wf

cubical-interval-filler() ∈ I:(Cname List)
⟶ J:(nameset(I) List)
⟶ x:nameset(I)
⟶ i:ℕ2
⟶ open_box(cubical-interval();I;J;x;i)
⟶ cubical-interval()(I)


Proof




Definitions occuring in Statement :  cubical-interval-filler: cubical-interval-filler() open_box: open_box(X;I;J;x;i) cubical-interval: cubical-interval() I-cube: X(I) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  cubical-interval-filler: cubical-interval-filler() member: t ∈ T cubical-interval: cubical-interval() I-cube: X(I) all: x:A. B[x] top: Top uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A nameset: nameset(L) open_box: open_box(X;I;J;x;i) cons: [a b] l_exists: (∃x∈L. P[x]) int_seg: {i..j-} coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] sq_stable: SqStable(P) squash: T decidable: Dec(P) le: A ≤ B so_apply: x[s] cand: c∧ B nat: iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True listp: List+ name-morph: name-morph(I;J)
Lemmas referenced :  ob_pair_lemma null_wf3 subtype_rel_list top_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base list_wf nameset_wf open_box_wf cubical-interval_wf coordinate_name_wf int_seg_wf I-face_wf list-cases product_subtype_list reduce_hd_cons_lemma length_of_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf I-cube_wf list-diff_wf cname_deq_wf cons_wf nil_wf isect_subtype_rel_trivial name-morph_wf subtype_rel-equal cubical-set_wf decidable__le le_wf face-cube_wf subtype_rel_dep_function face-dimension_wf name-morph_subtype nameset_subtype list-diff-subset subtype_rel_self hd_wf l_member_wf list-subtype listp_properties length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf length_wf get_face_wf extd-nameset-nil face-name_wf cubical-interval-ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality applyEquality because_Cache independent_isectElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination baseClosed setElimination rename natural_numberEquality hypothesis_subsumption int_eqEquality intEquality independent_pairFormation computeAll isectEquality universeEquality functionEquality imageMemberEquality imageElimination dependent_set_memberEquality setEquality addEquality minusEquality productEquality independent_pairEquality

Latex:
cubical-interval-filler()  \mmember{}  I:(Cname  List)
{}\mrightarrow{}  J:(nameset(I)  List)
{}\mrightarrow{}  x:nameset(I)
{}\mrightarrow{}  i:\mBbbN{}2
{}\mrightarrow{}  open\_box(cubical-interval();I;J;x;i)
{}\mrightarrow{}  cubical-interval()(I)



Date html generated: 2017_10_05-AM-10_26_44
Last ObjectModification: 2017_07_28-AM-11_23_01

Theory : cubical!sets


Home Index