Nuprl Lemma : get_face_wf
∀[X:CubicalSet]. ∀[I,J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)]. ∀[y:nameset(J)]. ∀[c:ℕ2].
  (get_face(y;c;box) ∈ {f:I-face(X;I)| (f ∈ box) ∧ (face-name(f) = <y, c> ∈ (nameset(I) × ℕ2))} )
Proof
Definitions occuring in Statement : 
get_face: get_face(y;c;box)
, 
open_box: open_box(X;I;J;x;i)
, 
face-name: face-name(f)
, 
I-face: I-face(X;I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
open_box: open_box(X;I;J;x;i)
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
get_face: get_face(y;c;box)
, 
prop: ℙ
, 
I-face: I-face(X;I)
, 
pi1: fst(t)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
pi2: snd(t)
, 
int_seg: {i..j-}
, 
bfalse: ff
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
listp: A List+
, 
cand: A c∧ B
, 
face-name: face-name(f)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
sq_type: SQType(T)
Lemmas referenced : 
non-trivial-open-box, 
list_wf, 
coordinate_name_wf, 
cubical-set_wf, 
int_seg_wf, 
nameset_wf, 
open_box_wf, 
list-subtype, 
subtype_rel_list, 
nameset_subtype, 
filter_type, 
I-face_wf, 
l_member_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
equal_wf, 
hd_wf, 
assert_wf, 
face-dimension_wf, 
face-direction_wf, 
listp_properties, 
band_wf, 
set_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
not_wf, 
nil_wf, 
less_than_wf, 
length_wf, 
face-name_wf, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
setElimination, 
rename, 
applyEquality, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
setEquality, 
lambdaEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
addEquality, 
independent_pairFormation, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
productEquality, 
independent_pairEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I,J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
\mforall{}[y:nameset(J)].  \mforall{}[c:\mBbbN{}2].
    (get\_face(y;c;box)  \mmember{}  \{f:I-face(X;I)|  (f  \mmember{}  box)  \mwedge{}  (face-name(f)  =  <y,  c>)\}  )
Date html generated:
2017_10_05-AM-10_20_52
Last ObjectModification:
2017_07_28-AM-11_21_07
Theory : cubical!sets
Home
Index