Step
*
1
2
1
2
3
1
of Lemma
get_face_image
.....assertion..... 
1. X : CubicalSet
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(X;I;J;x;i)
7. K : Cname List
8. f : name-morph(I;K)
9. c : ℕ2
10. y : nameset(J)
11. nameset([x / J]) ⊆r name-morph-domain(f;I)
12. ¬(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
= []
∈ ({f:{f:I-face(X;I)| (f ∈ bx)} | ↑((dimension(f) =z y) ∧b (direction(f) =z c))}  List))
13. (∀fc:I-face(X;I). ((fc ∈ bx) 
⇒ (↑isname(f (fst(fc))))))
∧ (map(f;J) ∈ nameset(K) List)
∧ (f x ∈ nameset(K))
∧ (f y ∈ nameset(map(f;J)))
14. ¬(map(λface.face-image(X;I;K;f;face);filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                                   ∧b (direction(face-image(X;I;K;f;x)) =z c));bx))
= []
∈ ({f@0:{f@0:I-face(X;K)| (f@0 ∈ map(λface.face-image(X;I;K;f;face);bx))} | 
    ↑((dimension(f@0) =z f y) ∧b (direction(f@0) =z c))}  List))
15. filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y) ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)
= filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
∈ ({f:I-face(X;I)| (f ∈ bx)}  List)
16. hd(map(λface.face-image(X;I;K;f;face);filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                                    ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)))
= face-image(X;I;K;f;hd(filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                  ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)))
∈ I-face(X;K)
⊢ hd(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx))
= hd(filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y) ∧b (direction(face-image(X;I;K;f;x)) =z c));bx))
∈ I-face(X;I)
BY
{ (DupHyp (-2) THEN MoveToConcl (-1) THEN MoveToConcl (12)) }
1
1. X : CubicalSet
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(X;I;J;x;i)
7. K : Cname List
8. f : name-morph(I;K)
9. c : ℕ2
10. y : nameset(J)
11. nameset([x / J]) ⊆r name-morph-domain(f;I)
12. (∀fc:I-face(X;I). ((fc ∈ bx) 
⇒ (↑isname(f (fst(fc))))))
∧ (map(f;J) ∈ nameset(K) List)
∧ (f x ∈ nameset(K))
∧ (f y ∈ nameset(map(f;J)))
13. ¬(map(λface.face-image(X;I;K;f;face);filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                                   ∧b (direction(face-image(X;I;K;f;x)) =z c));bx))
= []
∈ ({f@0:{f@0:I-face(X;K)| (f@0 ∈ map(λface.face-image(X;I;K;f;face);bx))} | 
    ↑((dimension(f@0) =z f y) ∧b (direction(f@0) =z c))}  List))
14. filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y) ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)
= filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
∈ ({f:I-face(X;I)| (f ∈ bx)}  List)
15. hd(map(λface.face-image(X;I;K;f;face);filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                                    ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)))
= face-image(X;I;K;f;hd(filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y)
                                  ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)))
∈ I-face(X;K)
⊢ (¬(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
  = []
  ∈ ({f:{f:I-face(X;I)| (f ∈ bx)} | ↑((dimension(f) =z y) ∧b (direction(f) =z c))}  List)))
⇒ (filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y) ∧b (direction(face-image(X;I;K;f;x)) =z c));bx)
   = filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx)
   ∈ ({f:I-face(X;I)| (f ∈ bx)}  List))
⇒ (hd(filter(λf.((dimension(f) =z y) ∧b (direction(f) =z c));bx))
   = hd(filter(λx.((dimension(face-image(X;I;K;f;x)) =z f y) ∧b (direction(face-image(X;I;K;f;x)) =z c));bx))
   ∈ I-face(X;I))
Latex:
Latex:
.....assertion..... 
1.  X  :  CubicalSet
2.  I  :  Cname  List
3.  J  :  nameset(I)  List
4.  x  :  nameset(I)
5.  i  :  \mBbbN{}2
6.  bx  :  open\_box(X;I;J;x;i)
7.  K  :  Cname  List
8.  f  :  name-morph(I;K)
9.  c  :  \mBbbN{}2
10.  y  :  nameset(J)
11.  nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f;I)
12.  \mneg{}(filter(\mlambda{}f.((dimension(f)  =\msubz{}  y)  \mwedge{}\msubb{}  (direction(f)  =\msubz{}  c));bx)  =  [])
13.  (\mforall{}fc:I-face(X;I).  ((fc  \mmember{}  bx)  {}\mRightarrow{}  (\muparrow{}isname(f  (fst(fc))))))
\mwedge{}  (map(f;J)  \mmember{}  nameset(K)  List)
\mwedge{}  (f  x  \mmember{}  nameset(K))
\mwedge{}  (f  y  \mmember{}  nameset(map(f;J)))
14.  \mneg{}(map(\mlambda{}face.face-image(X;I;K;f;face);filter(\mlambda{}x.((dimension(face-image(X;I;K;f;x))  =\msubz{}  f  y)
                                                                                                      \mwedge{}\msubb{}  (direction(face-image(X;I;K;f;x))  =\msubz{}  c));bx))
=  [])
15.  filter(\mlambda{}x.((dimension(face-image(X;I;K;f;x))  =\msubz{}  f  y)
                            \mwedge{}\msubb{}  (direction(face-image(X;I;K;f;x))  =\msubz{}  c));bx)
=  filter(\mlambda{}f.((dimension(f)  =\msubz{}  y)  \mwedge{}\msubb{}  (direction(f)  =\msubz{}  c));bx)
16.  hd(map(\mlambda{}face.face-image(X;I;K;f;face);filter(\mlambda{}x.((dimension(face-image(X;I;K;f;x))  =\msubz{}  f  y)
                                                                                                        \mwedge{}\msubb{}  (direction(face-image(X;I;K;f;x))  =\msubz{}  c));
                                                                                                  bx)))
=  face-image(X;I;K;f;hd(filter(\mlambda{}x.((dimension(face-image(X;I;K;f;x))  =\msubz{}  f  y)
                                                                    \mwedge{}\msubb{}  (direction(face-image(X;I;K;f;x))  =\msubz{}  c));bx)))
\mvdash{}  hd(filter(\mlambda{}f.((dimension(f)  =\msubz{}  y)  \mwedge{}\msubb{}  (direction(f)  =\msubz{}  c));bx))
=  hd(filter(\mlambda{}x.((dimension(face-image(X;I;K;f;x))  =\msubz{}  f  y)
                              \mwedge{}\msubb{}  (direction(face-image(X;I;K;f;x))  =\msubz{}  c));bx))
By
Latex:
(DupHyp  (-2)  THEN  MoveToConcl  (-1)  THEN  MoveToConcl  (12))
Home
Index