Step * 1 1 of Lemma poset-functor-extends-box-faces-1


1. Groupoid
2. Cname List
3. nameset(I) List
4. nameset(I)
5. : ℕ2
6. bx open_box(cubical-nerve(cat(G));I;J;x;i)
7. ¬↑null(J)
8. (∀j'∈J.j' hd(J) ∈ Cname)
9. i1 : ℕ||bx||
10. ∀f:name-morph(I-[dimension(bx[i1])];[]). (((dimension(bx[i1]):=direction(bx[i1])) f) ∈ name-morph(I;[]))
11. x1 name-morph(I-[dimension(bx[i1])];[])
⊢ (cube(bx[i1]) x1) nerve_box_label(bx;((dimension(bx[i1]):=direction(bx[i1])) x1)) ∈ cat-ob(cat(G))
BY
TACTIC:(RenameVar `f' (-1)
          THEN (Assert ((dimension(bx[i1]):=direction(bx[i1])) f) ∈ name-morph(I;[]) BY
                      TACTIC:(BackThruSomeHyp THEN Auto))
          THEN (InstLemma `nerve_box_label_same` [⌜cat(G)⌝;⌜I⌝;⌜J⌝;⌜x⌝;⌜i⌝;⌜bx⌝;
                ⌜((dimension(bx[i1]):=direction(bx[i1])) f)⌝;⌜bx[i1]⌝]⋅
                THENA Auto
                )) }

1
.....antecedent..... 
1. Groupoid
2. Cname List
3. nameset(I) List
4. nameset(I)
5. : ℕ2
6. bx open_box(cubical-nerve(cat(G));I;J;x;i)
7. ¬↑null(J)
8. (∀j'∈J.j' hd(J) ∈ Cname)
9. i1 : ℕ||bx||
10. ∀f:name-morph(I-[dimension(bx[i1])];[]). (((dimension(bx[i1]):=direction(bx[i1])) f) ∈ name-morph(I;[]))
11. name-morph(I-[dimension(bx[i1])];[])
12. ((dimension(bx[i1]):=direction(bx[i1])) f) ∈ name-morph(I;[])
⊢ direction(bx[i1]) (((dimension(bx[i1]):=direction(bx[i1])) f) dimension(bx[i1])) ∈ ℕ2

2
1. Groupoid
2. Cname List
3. nameset(I) List
4. nameset(I)
5. : ℕ2
6. bx open_box(cubical-nerve(cat(G));I;J;x;i)
7. ¬↑null(J)
8. (∀j'∈J.j' hd(J) ∈ Cname)
9. i1 : ℕ||bx||
10. ∀f:name-morph(I-[dimension(bx[i1])];[]). (((dimension(bx[i1]):=direction(bx[i1])) f) ∈ name-morph(I;[]))
11. name-morph(I-[dimension(bx[i1])];[])
12. ((dimension(bx[i1]):=direction(bx[i1])) f) ∈ name-morph(I;[])
13. (cube(bx[i1]) ((dimension(bx[i1]):=direction(bx[i1])) f))
nerve_box_label(bx;((dimension(bx[i1]):=direction(bx[i1])) f))
∈ cat-ob(cat(G))
⊢ (cube(bx[i1]) f) nerve_box_label(bx;((dimension(bx[i1]):=direction(bx[i1])) f)) ∈ cat-ob(cat(G))


Latex:


Latex:

1.  G  :  Groupoid
2.  I  :  Cname  List
3.  J  :  nameset(I)  List
4.  x  :  nameset(I)
5.  i  :  \mBbbN{}2
6.  bx  :  open\_box(cubical-nerve(cat(G));I;J;x;i)
7.  \mneg{}\muparrow{}null(J)
8.  (\mforall{}j'\mmember{}J.j'  =  hd(J))
9.  i1  :  \mBbbN{}||bx||
10.  \mforall{}f:name-morph(I-[dimension(bx[i1])];[])
            (((dimension(bx[i1]):=direction(bx[i1]))  o  f)  \mmember{}  name-morph(I;[]))
11.  x1  :  name-morph(I-[dimension(bx[i1])];[])
\mvdash{}  (cube(bx[i1])  x1)  =  nerve\_box\_label(bx;((dimension(bx[i1]):=direction(bx[i1]))  o  x1))


By


Latex:
TACTIC:(RenameVar  `f'  (-1)
                THEN  (Assert  ((dimension(bx[i1]):=direction(bx[i1]))  o  f)  \mmember{}  name-morph(I;[])  BY
                                        TACTIC:(BackThruSomeHyp  THEN  Auto))
                THEN  (InstLemma  `nerve\_box\_label\_same`  [\mkleeneopen{}cat(G)\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}i\mkleeneclose{};\mkleeneopen{}bx\mkleeneclose{};
                            \mkleeneopen{}((dimension(bx[i1]):=direction(bx[i1]))  o  f)\mkleeneclose{};\mkleeneopen{}bx[i1]\mkleeneclose{}]\mcdot{}
                            THENA  Auto
                            ))




Home Index