Nuprl Lemma : poset-functor-extends-box-faces-1

G:Groupoid. ∀I:Cname List. ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀bx:open_box(cubical-nerve(cat(G));I;J;x;i).
  (((¬↑null(J)) ∧ (∀j'∈J.j' hd(J) ∈ Cname))
   (∀fc∈bx.poset-functor-extends(cat(G);I-[dimension(fc)];λx.nerve_box_label(bx;((dimension(fc):=direction(fc)) x));
                                   λz,f. nerve_box_edge1(G;bx;x;i;hd(J);((dimension(fc):=direction(fc)) f);z);cube(fc)\000C)))


Proof




Definitions occuring in Statement :  nerve_box_edge1: nerve_box_edge1(G;box;x;i;j;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) poset-functor-extends: poset-functor-extends(C;I;L;E;F) open_box: open_box(X;I;J;x;i) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) name-comp: (f g) face-map: (x:=i) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname groupoid-cat: cat(G) groupoid: Groupoid list-diff: as-bs l_all: (∀x∈L.P[x]) null: null(as) hd: hd(l) cons: [a b] nil: [] list: List int_seg: {i..j-} assert: b all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q lambda: λx.A[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q l_all: (∀x∈L.P[x]) member: t ∈ T uall: [x:A]. B[x] open_box: open_box(X;I;J;x;i) int_seg: {i..j-} uimplies: supposing a guard: {T} nameset: nameset(L) lelt: i ≤ j < k sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b subtype_rel: A ⊆B poset-functor-extends: poset-functor-extends(C;I;L;E;F) name-morph: name-morph(I;J) respects-equality: respects-equality(S;T) so_lambda: λ2x.t[x] assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] bfalse: ff nat: ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) so_apply: x[s] bnot: ¬bb lt_int: i <j le_int: i ≤j isname: isname(z) uext: uext(g) sq_type: SQType(T) compose: g name-comp: (f g) face-map: (x:=i) pi2: snd(t) pi1: fst(t) face-cube: cube(f) face-dimension: dimension(f) face-direction: direction(f) I-face: I-face(X;I) cat-ob: cat-ob(C) poset-cat: poset-cat(J) it: unit: Unit bool: 𝔹 nequal: a ≠ b ∈  cand: c∧ B nerve_box_edge1: nerve_box_edge1(G;box;x;i;j;c;y) listp: List+ face-name: face-name(f) l_member: (x ∈ l) exposed-it: exposed-it bor: p ∨bq l_exists: (∃x∈L. P[x]) name-morph-flip: flip(f;y)
Lemmas referenced :  name-comp_wf list-diff_wf coordinate_name_wf cname_deq_wf cons_wf face-dimension_wf cubical-nerve_wf groupoid-cat_wf select_wf I-face_wf int_seg_properties length_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma nil_wf face-map_wf2 face-direction_wf name-morph_wf extd-nameset-respects-equality int_seg_wf nameset_wf istype-assert null_wf3 subtype_rel_list top_wf l_all_wf2 equal_wf hd_wf list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma length_wf_nat istype-false not-ge-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 l_member_wf open_box_wf list_wf groupoid_wf select_member int_subtype_base lelt_wf set_subtype_base nerve_box_label_same int_seg_cases int_seg_subtype_special bfalse_wf decidable__equal_int iff_weakening_equal subtype_rel_self btrue_wf eq_int_eq_true istype-universe true_wf squash_wf bool_subtype_base bool_wf subtype_base_sq cat-ob_wf cubical-nerve-I-cube list-diff-subset nameset_subtype name-morph_subtype name-morph-ext poset-cat_wf functor-ob_wf member_singleton member-list-diff uext-ap-name neg_assert_of_eq_int assert-bnot bool_cases_sqequal eqff_to_assert istype-le le_wf int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert eq_int_wf respects-equality-set-trivial2 extd-nameset-nil not_wf equal-wf-T-base or_wf istype-less_than le-add-cancel zero-add not-lt-2 listp_properties eq-cname_wf bnot_wf bor_wf assert_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_bnot assert-eq-cname cons_member btrue_neq_bfalse assert_elim decidable__equal_int_seg int_term_value_subtract_lemma itermSubtract_wf subtract_wf nat_properties l_all_iff not-equal-2 nerve_box_edge_same1 l_exists_wf select0 not_assert_elim nerve_box_label_wf cat-arrow_wf name-morph-flip_wf nsub2_subtype_extd-nameset isname-name small-category_wf functor-arrow_wf extd-nameset_subtype_base extd-nameset_wf subtype_rel_set member-poset-cat-arrow poset-cat-arrow-flip subtype_rel-equal int_seg_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis because_Cache setElimination independent_isectElimination natural_numberEquality dependent_functionElimination independent_functionElimination inhabitedIsType sqequalRule imageMemberEquality baseClosed imageElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality setIsType equalityIstype sqequalBase equalitySymmetry productIsType functionIsType promote_hyp hypothesis_subsumption addEquality minusEquality equalityTransitivity functionExtensionality closedConclusion intEquality equalityIsType3 inrFormation_alt equalityIsType1 universeEquality cumulativity instantiate hyp_replacement applyLambdaEquality dependent_set_memberEquality_alt equalityElimination unionIsType inlFormation_alt equalityIsType2 equalityIsType4 baseApply independent_pairEquality

Latex:
\mforall{}G:Groupoid.  \mforall{}I:Cname  List.  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}bx:open\_box(cubical-nerve(cat(G));I;J;x;i).
    (((\mneg{}\muparrow{}null(J))  \mwedge{}  (\mforall{}j'\mmember{}J.j'  =  hd(J)))
    {}\mRightarrow{}  (\mforall{}fc\mmember{}bx.
                  poset-functor-extends(cat(G);I-[dimension(fc)];
                                                              \mlambda{}x.nerve\_box\_label(bx;((dimension(fc):=direction(fc))  o  x));
                                                              \mlambda{}z,f.  nerve\_box\_edge1(G;bx;x;i;hd(J);((dimension(fc):=...)  o  f);z);
                                                              cube(fc))))



Date html generated: 2019_11_05-PM-00_37_43
Last ObjectModification: 2018_12_15-PM-08_44_59

Theory : cubical!sets


Home Index