Nuprl Lemma : poset-cat-arrow-flip
∀I:Cname List. ∀x:cat-ob(poset-cat(I)). ∀a:nameset(I).  (((x a) = 0 ∈ ℤ) 
⇒ (cat-arrow(poset-cat(I)) x flip(x;a)))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J)
, 
name-morph-flip: flip(f;y)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
name-morph-flip: flip(f;y)
, 
poset-cat: poset-cat(J)
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
cat-ob: cat-ob(C)
, 
name-morph: name-morph(I;J)
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
assert_of_le_int, 
eq-cname_wf, 
bool_wf, 
eqtt_to_assert, 
assert-eq-cname, 
subtract_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
coordinate_name_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
false_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
nameset_wf, 
extd-nameset_wf, 
nil_wf, 
all_wf, 
assert_wf, 
isname_wf, 
l_member_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
cat-ob_wf, 
poset-cat_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality, 
lambdaEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setEquality, 
functionEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}I:Cname  List.  \mforall{}x:cat-ob(poset-cat(I)).  \mforall{}a:nameset(I).
    (((x  a)  =  0)  {}\mRightarrow{}  (cat-arrow(poset-cat(I))  x  flip(x;a)))
Date html generated:
2017_10_05-AM-10_27_48
Last ObjectModification:
2017_07_28-AM-11_23_20
Theory : cubical!sets
Home
Index