Nuprl Lemma : groupoid_wf
Groupoid ∈ 𝕌'
Proof
Definitions occuring in Statement : 
groupoid: Groupoid
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
groupoid: Groupoid
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
small-category_wf, 
cat-ob_wf, 
cat-arrow_wf, 
all_wf, 
equal_wf, 
cat-comp_wf, 
cat-id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
setEquality, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
functionExtensionality
Latex:
Groupoid  \mmember{}  \mBbbU{}'
Date html generated:
2017_10_05-AM-00_49_03
Last ObjectModification:
2017_07_28-AM-09_20_07
Theory : small!categories
Home
Index