Nuprl Lemma : groupoid-cat_wf
∀[G:Groupoid]. (cat(G) ∈ SmallCategory)
Proof
Definitions occuring in Statement : 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
pi1: fst(t)
, 
groupoid: Groupoid
, 
groupoid-cat: cat(G)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
groupoid_wf
Rules used in proof : 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[G:Groupoid].  (cat(G)  \mmember{}  SmallCategory)
Date html generated:
2016_05_18-AM-11_54_21
Last ObjectModification:
2015_12_28-PM-02_23_07
Theory : small!categories
Home
Index