Nuprl Lemma : uext-ap-name

[I,J:Cname List]. ∀[g:name-morph(I;J)]. ∀[x:nameset(I)].  ((uext(g) x) (g x) ∈ extd-nameset(J))


Proof




Definitions occuring in Statement :  name-morph: name-morph(I;J) uext: uext(g) extd-nameset: extd-nameset(L) nameset: nameset(L) coordinate_name: Cname list: List uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uext: uext(g) nameset: nameset(L) ifthenelse: if then else fi  btrue: tt name-morph: name-morph(I;J)
Lemmas referenced :  isname-name nameset_wf name-morph_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[g:name-morph(I;J)].  \mforall{}[x:nameset(I)].    ((uext(g)  x)  =  (g  x))



Date html generated: 2016_05_20-AM-09_29_35
Last ObjectModification: 2015_12_28-PM-04_47_19

Theory : cubical!sets


Home Index