Nuprl Lemma : uext-ap-name
∀[I,J:Cname List]. ∀[g:name-morph(I;J)]. ∀[x:nameset(I)].  ((uext(g) x) = (g x) ∈ extd-nameset(J))
Proof
Definitions occuring in Statement : 
name-morph: name-morph(I;J)
, 
uext: uext(g)
, 
extd-nameset: extd-nameset(L)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uext: uext(g)
, 
nameset: nameset(L)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
name-morph: name-morph(I;J)
Lemmas referenced : 
isname-name, 
nameset_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[g:name-morph(I;J)].  \mforall{}[x:nameset(I)].    ((uext(g)  x)  =  (g  x))
Date html generated:
2016_05_20-AM-09_29_35
Last ObjectModification:
2015_12_28-PM-04_47_19
Theory : cubical!sets
Home
Index