Step
*
2
2
of Lemma
poset-functors-equal
.....wf..... 
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
⊢ (∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C)))
  ∧ (∀x:nameset(I). ∀f:{f:name-morph(I;[])| (f x) = 0 ∈ ℕ2} .
       ((arrow(F) f flip(f;x) (λx.Ax)) = (arrow(G) f flip(f;x) (λx.Ax)) ∈ (cat-arrow(C) (ob(F) f) (ob(F) flip(f;x)))))
  ∈ ℙ
BY
{ AndMemCD }
1
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
⊢ ∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C)) ∈ Type
2
1. C : SmallCategory
2. I : Cname List
3. F : Functor(poset-cat(I);C)
4. G : Functor(poset-cat(I);C)
5. ∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C))
⊢ ∀x:nameset(I). ∀f:{f:name-morph(I;[])| (f x) = 0 ∈ ℕ2} .
    ((arrow(F) f flip(f;x) (λx.Ax)) = (arrow(G) f flip(f;x) (λx.Ax)) ∈ (cat-arrow(C) (ob(F) f) (ob(F) flip(f;x))))
  ∈ Type
Latex:
Latex:
.....wf..... 
1.  C  :  SmallCategory
2.  I  :  Cname  List
3.  F  :  Functor(poset-cat(I);C)
4.  G  :  Functor(poset-cat(I);C)
\mvdash{}  (\mforall{}f:name-morph(I;[]).  ((ob(F)  f)  =  (ob(G)  f)))
    \mwedge{}  (\mforall{}x:nameset(I).  \mforall{}f:\{f:name-morph(I;[])|  (f  x)  =  0\}  .
              ((arrow(F)  f  flip(f;x)  (\mlambda{}x.Ax))  =  (arrow(G)  f  flip(f;x)  (\mlambda{}x.Ax))))  \mmember{}  \mBbbP{}
By
Latex:
AndMemCD
Home
Index