Nuprl Lemma : poset-functors-equal

C:SmallCategory. ∀I:Cname List. ∀F,G:Functor(poset-cat(I);C).
  (F G ∈ Functor(poset-cat(I);C)
  ⇐⇒ (∀f:name-morph(I;[]). ((ob(F) f) (ob(G) f) ∈ cat-ob(C)))
      ∧ (∀x:nameset(I). ∀f:{f:name-morph(I;[])| (f x) 0 ∈ ℕ2} .
           ((arrow(F) flip(f;x) x.Ax))
           (arrow(G) flip(f;x) x.Ax))
           ∈ (cat-arrow(C) (ob(F) f) (ob(F) flip(f;x))))))


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory nil: [] list: List int_seg: {i..j-} all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] implies:  Q cand: c∧ B prop: subtype_rel: A ⊆B name-morph: name-morph(I;J) cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_seg: {i..j-} squash: T true: True rev_implies:  Q guard: {T} nameset: nameset(L) coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top poset-functor-extends: poset-functor-extends(C;I;L;E;F)
Lemmas referenced :  cat-functor_wf poset-cat_wf list_wf coordinate_name_wf small-category_wf equal_wf and_wf functor-ob_wf cat-ob_wf subtype_rel_self nameset_wf extd-nameset_wf nil_wf all_wf assert_wf isname_wf name-morph_wf member-poset-cat-arrow subtype_rel_set equal-wf-T-base int_seg_wf name-morph-flip_wf poset-cat-arrow-flip set_wf extd-nameset-nil functor-arrow_wf squash_wf true_wf poset-extend-unique subtype_rel_dep_function int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf iff_weakening_equal cat-arrow_wf subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation because_Cache cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalitySymmetry dependent_set_memberEquality applyLambdaEquality setElimination rename productElimination equalityTransitivity functionEquality applyEquality sqequalRule setEquality lambdaEquality functionExtensionality natural_numberEquality baseClosed independent_isectElimination dependent_functionElimination independent_functionElimination addLevel levelHypothesis imageElimination imageMemberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll universeEquality productEquality instantiate

Latex:
\mforall{}C:SmallCategory.  \mforall{}I:Cname  List.  \mforall{}F,G:Functor(poset-cat(I);C).
    (F  =  G
    \mLeftarrow{}{}\mRightarrow{}  (\mforall{}f:name-morph(I;[]).  ((ob(F)  f)  =  (ob(G)  f)))
            \mwedge{}  (\mforall{}x:nameset(I).  \mforall{}f:\{f:name-morph(I;[])|  (f  x)  =  0\}  .
                      ((arrow(F)  f  flip(f;x)  (\mlambda{}x.Ax))  =  (arrow(G)  f  flip(f;x)  (\mlambda{}x.Ax)))))



Date html generated: 2017_10_05-PM-03_36_15
Last ObjectModification: 2017_07_28-AM-11_25_03

Theory : cubical!sets


Home Index