Step
*
of Lemma
app-univ-a-1
No Annotations
β[G:jβ’]. β[A,B:{G β’ _:cπ}]. β[f:{G β’ _:Equiv(decode(A);decode(B))}].
(app(UA; f) = (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f] β {G β’ _:(Path_cπ A B)})
BY
{ (Introsβ
THEN Unhide
THEN (Assert G β’ Equiv(decode(A);decode(B)) BY
Auto)
THEN ((InstLemmaIJ `csm-ap-term-universe` [βGβ;βG.Equiv(decode(A);decode(B))β;βpβ;βAβ]β
THENA Auto)
THEN (InstLemmaIJ `csm-ap-term-universe` [βGβ;βG.Equiv(decode(A);decode(B))β;βpβ;βBβ]β
THENA Auto)
)
THEN Unfold `univ-a` 0
THEN InstLemma `cubical-lam_wf` [parm{i|j};βparm{i'}β]β
) }
1
1. G : CubicalSet{j}
2. A : {G β’ _:cπ}
3. B : {G β’ _:cπ}
4. f : {G β’ _:Equiv(decode(A);decode(B))}
5. G β’ Equiv(decode(A);decode(B))
6. (A)p β {G.Equiv(decode(A);decode(B)) β’ _:cπ}
7. (B)p β {G.Equiv(decode(A);decode(B)) β’ _:cπ}
8. β[X:ijβ’]. β[A,B:{X β’' _}]. β[b:{X.A β’ _:(B)p}]. (cubical-lam(X;b) β {X β’ _:(A βΆ B)})
β’ app(cubical-lam(G;EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q)); f)
= (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f]
β {G β’ _:(Path_cπ A B)}
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. \mforall{}[A,B:\{G \mvdash{} \_:c\mBbbU{}\}]. \mforall{}[f:\{G \mvdash{} \_:Equiv(decode(A);decode(B))\}].
(app(UA; f) = (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f])
By
Latex:
(Intros\mcdot{}
THEN Unhide
THEN (Assert G \mvdash{} Equiv(decode(A);decode(B)) BY
Auto)
THEN ((InstLemmaIJ `csm-ap-term-universe`
[\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}G.Equiv(decode(A);decode(B))\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN (InstLemmaIJ `csm-ap-term-universe`
[\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}G.Equiv(decode(A);decode(B))\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{}]\mcdot{}
THENA Auto
)
)
THEN Unfold `univ-a` 0
THEN InstLemma `cubical-lam\_wf` [parm\{i|j\};\mkleeneopen{}parm\{i'\}\mkleeneclose{}]\mcdot{})
Home
Index