Nuprl Lemma : app-univ-a-1
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].
  (app(UA; f) = (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f] ∈ {G ⊢ _:(Path_c𝕌 A B)})
Proof
Definitions occuring in Statement : 
univ-a: UA
, 
equiv-path: EquivPath(G;A;B;f)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
cubical-equiv: Equiv(T;A)
, 
path-type: (Path_A a b)
, 
cubical-app: app(w; u)
, 
csm-id-adjoin: [u]
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
univ-a: UA
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
cubical-lam: cubical-lam(X;b)
, 
csm-id: 1(X)
, 
csm-ap-term: (t)s
, 
cc-fst: p
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
csm-ap-term-universe, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
cubical-lam_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
universe-decode_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
equiv-path_wf, 
cc-snd_wf, 
cubical-term-eqcd, 
cubical-beta, 
cubical-type-cumulativity, 
csm-cubical-equiv, 
csm-universe-decode, 
path-type_wf, 
cubical-universe_wf, 
csm-path-type, 
csm-id-adjoin_wf, 
csm-cubical-universe, 
squash_wf, 
true_wf, 
cubical-type_wf, 
csm-ap-id-term
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
because_Cache, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeIsType, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
Error :memTop, 
imageElimination, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (app(UA;  f)  =  (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f])
Date html generated:
2020_05_20-PM-07_31_19
Last ObjectModification:
2020_04_28-PM-11_57_30
Theory : cubical!type!theory
Home
Index