Nuprl Lemma : app-univ-a-1

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].
  (app(UA; f) (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f] ∈ {G ⊢ _:(Path_c𝕌 B)})


Proof




Definitions occuring in Statement :  univ-a: UA equiv-path: EquivPath(G;A;B;f) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-app: app(w; u) csm-id-adjoin: [u] cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} univ-a: UA all: x:A. B[x] uimplies: supposing a cubical-lam: cubical-lam(X;b) csm-id: 1(X) csm-ap-term: (t)s cc-fst: p csm-id-adjoin: [u] csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) squash: T prop: true: True
Lemmas referenced :  csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf cubical-lam_wf istype-cubical-term cubical-equiv_wf universe-decode_wf istype-cubical-universe-term cubical_set_wf equiv-path_wf cc-snd_wf cubical-term-eqcd cubical-beta cubical-type-cumulativity csm-cubical-equiv csm-universe-decode path-type_wf cubical-universe_wf csm-path-type csm-id-adjoin_wf csm-cubical-universe squash_wf true_wf cubical-type_wf csm-ap-id-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut because_Cache thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination universeIsType independent_isectElimination lambdaEquality_alt hyp_replacement Error :memTop,  imageElimination inhabitedIsType natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (app(UA;  f)  =  (EquivPath(G.Equiv(decode(A);decode(B));(A)p;(B)p;q))[f])



Date html generated: 2020_05_20-PM-07_31_19
Last ObjectModification: 2020_04_28-PM-11_57_30

Theory : cubical!type!theory


Home Index